UMFULA intends to generate higher quality, more useful information about the future climate and its impacts, and to make climate information more tailored and accessible to planners. In April 2016 a team visited Tanzania to meet key stakeholders in government, private sector, donor agencies and NGOs to discuss how climate information could inform their planning, and opportunities for future engagement.

**ACTIVITIES TO DATE**

1. Understanding of the competing demands on water resources at the national and local level in the face of an increasingly variable climate
2. Mapping existing initiatives in Tanzania and where UMFULA can play a complementary role
3. Identifying entry points for climate information to inform forthcoming/existing plans, policies and infrastructure projects
4. Scoping data availability to inform water models (that are driven by new, high resolution, climate projections)

**PLANNED ACTIVITIES**

1. Work with partners at national and local level to determine the agriculture and water-related decisions on which they would like to work to better integrate climate information
2. Decide on appropriate decision-making theory and how best to use this in an interactive user-driven process to generate scenarios that, in turn, can be evaluated to inform climate-resilient planning decisions
3. Optimise the hydrological simulation of the Upper Great Ruaha, Kilombero and Luwegu sub-catchments to study the impact of climate change on various investment decisions at a more localised scale than has previously been possible
4. Build on the existing Rufiji decision support system to advance the analysis of important investment decisions in irrigation development, water storage or hydropower generation
5. Develop an in depth understanding of the workplace challenges that limit effective service delivery in national and local agencies and identify options to help overcome these barriers

**ON-GOING CLIMATE SCIENCE**

1. Producing briefing notes on central African climate, southern African climate
2. Investigating factors that affect rainfall variability and temperature in southern Africa (such as the Congo basin and large scale global air flow patterns)
3. Determining how well climate models simulate key factors that affect southern African climate to find out which global models are most robust for the region

For more information, contact Professor Kashaigili (jkashaigili@gmail.com; +255 754 207117) or Professor Conway (d.conway@lse.ac.uk)