Generic selectors
Exact matches only
Search in title
Search in content

The impact of RCM formulation and resolution on simulated precipitation in Africa


Share on facebook
Share on twitter
Share on linkedin


We investigate the impact of model formulation and horizontal resolution on the ability of Regional Climate Models (RCMs) to simulate precipitation in Africa. Two RCMs – SMHI-RCA4 and HCLIM38-ALADIN are utilized for downscaling the ERA-Interim reanalysis over Africa at four different resolutions: 25, 50, 100 and 200 km. Additionally to the two RCMs, two different configurations of the same RCA4 are used. Contrasting different RCMs, configurations and resolutions it is found that model formulation has the primary control over many aspects of the precipitation climatology in Africa. Patterns of spatial biases in seasonal mean precipitation are mostly defined by model formulation while the magnitude of the biases is controlled by resolution. In a similar way, the phase of the diurnal cycle is completely controlled by model formulation (convection scheme) while its amplitude is a function of resolution. Although higher resolution in many cases leads to smaller biases in the time mean climate, the impact of higher resolution is mixed. An improvement in one region/season (e.g. reduction of dry biases) often corresponds to a deterioration in another region/season (e.g. amplification of wet biases). The experiments confirm a pronounced and well known impact of higher resolution – a more realistic distribution of daily precipitation. Even if the time-mean climate is not always greatly sensitive to resolution, what the time-mean climate is made up of, higher order statistics, is sensitive. Therefore, the realism of the simulated precipitation increases as resolution increases.