Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Seasonality and Trends of Drivers of Mesoscale Convective Systems in Southern West Africa


Mesoscale convective systems (MCSs) are the major source of extreme rainfall over land in the tropics and are expected to intensify with global warming. In the Sahel, changes in surface temperature gradients and associated changes in wind shear have been found to be important for MCS intensification in recent decades. Here we extend that analysis to southern West Africa (SWA) by combining 34 years of cloud-top temperatures with rainfall and reanalysis data. We identify clear trends in intense MCSs since 1983 and their associated atmospheric drivers. We also find a marked annual cycle in the drivers, linked to changes in the convective regime during the progression of the West African monsoon. Before the peak of the first rainy season, we identify a shear regime where increased temperature gradients play a crucial role for MCS intensity trends. From June onward, SWA moves into a less unstable, moist regime during which MCS trends are mainly linked to frequency increase and may be more influenced by total column water vapor. However, during both seasons we find that MCSs with the most intense convection occur in an environment with stronger wind shear, increased low-level humidity, and drier midlevels. Comparing the sensitivity of MCS intensity and peak rainfall to low-level moisture and wind shear conditions preceding events, we find a dominant role for wind shear. We conclude that MCS trends are directly linked to a strengthening of two distinct convective regimes that cause the seasonal change of SWA MCS characteristics. However, the convective environment that ultimately produces the most intense MCSs remains the same.