Finding the value in good co-production

Co-production can take many shapes and forms and requires an investment in time – the shortest project length in the case studies is 18 months. In addition, due to the highly collaborative nature of co-production, the costs for convening multiple face-to-face sessions (workshops, visits etc.) can add up. However, when considering whether or not to use a co-production approach, keep in mind the benefits of the approach and whether these will help you meet your intended objectives. This section looks to help projects identify value-for-money approaches as well as ways to help measure the value of the co-production process and co-produced products.

3.1 Value for money

Co-production is usually – but not always – resource and time intensive, and this can raise concerns over whether it is good value for money. The benefits of taking a co-production approach are as follows:

- Co-production ensures that climate information is tailored to a specific context, and is therefore more likely to be valuable to the user.
- Co-production brings people together, which can create synergies and opportunities for resource sharing and creative thinking on cost effectiveness.
- Co-production ensures a wider reach and impact through multiple communication channels, using intermediaries and users, and improves the tailoring of communication to specific audiences.
- Co-production and joint ownership promotes integration of climate information into actions and likewise into plans and budgets.
- Co-production creates a virtuous cycle: investment in capacities to co-produce better, more relevant products and information and enable more user-focused communication leads to better understanding, use and benefits; which contributes to resilient livelihoods and economic development; and ultimately increases demand for more and better climate information.

The longer term benefits of co-production have been observed in the ENACTS and Participatory Scenario Planning approaches. In both cases the co-production investments made have resulted in meteorological services (national and county level) being more aware of user needs and building their capacity to address the needs of the users they are servicing. In addition this improves the understanding of how weather and climate information can be used in decision-making by users. More information on the scaling up and sustainability of these approaches is described in section 3.2.
3.1.1 Measuring the value of co-production approaches

Measuring the value of co-production can be done in many ways, ranging from quantitative and qualitative evaluation to more comprehensive assessment of the socio-economic value of a co-production process.

The ‘3 E’s’ from the Guidance Notes on Implementation of WISER Value for Money and Socio-economic Benefit Framework (based on DFID’s, now FCDO’s, principles) breaks down the measurement of value for money into three components: Economy, Efficiency and Effectiveness. Table 1 shows some examples of how consultative and immersive projects have demonstrated their value for money against the three E’s. In addition, a 4th ‘E’ for Equity has been added and provides examples of how to achieve better equity.

TABLE 1: Examples of economy, efficiency, effectiveness and equity

<table>
<thead>
<tr>
<th>ECONOMY (inputs, i.e. spending less)</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Host meetings at partners, offices and government buildings that do not require venue hire.</td>
<td></td>
</tr>
<tr>
<td>• Employ project representatives in country that can host meetings as needed.</td>
<td></td>
</tr>
<tr>
<td>• Build on existing networks and relationships where possible.</td>
<td></td>
</tr>
<tr>
<td>• Make use of other workshops, or convening opportunities where some of the partners will be coming together, to reduce costs.</td>
<td></td>
</tr>
<tr>
<td>• Make use of preferential rates for hotels and other services that are available through one or more partners.</td>
<td></td>
</tr>
<tr>
<td>• Staff costs can be lower in country compared to international experts, who also require travel costs.</td>
<td></td>
</tr>
<tr>
<td>• Co-host meetings with those engaged in complementary initiatives (e.g. A joint BRACED/AMMA-2050 workshop on integrating climate information in local government decision-making allowed for pooling of project stakeholder engagement resources).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFFICIENCY (i.e. spending well)</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Local partners do not require international travel expenses. Try to find partners that are based locally, as far as possible, to minimise travel costs.</td>
<td></td>
</tr>
<tr>
<td>• Maximise opportunities, (e.g. UMFULA co-hosted a panel discussion on climate information that was open to the public in Malawi while in country for a project meeting).</td>
<td></td>
</tr>
<tr>
<td>• In country staff can make better use of opportunities to collaborate (e.g. In FRACTAL, embedded researchers in city, were able to make use of opportunistic events/developments).</td>
<td></td>
</tr>
<tr>
<td>• Include training for staff that will be taking on the delivery of the climate service in the long-term.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFFECTIVENESS (i.e. spending wisely)</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Apps are easier to use than websites in many countries as they requires less bandwidth.</td>
<td></td>
</tr>
<tr>
<td>• Ensure that the intended target groups are reached in meetings and ensure accessibility of outputs (e.g. women may not be allowed to attend community leaders’ meeting; or are not comfortable speaking in English/other languages) and make alternative convening spaces available as needed.</td>
<td></td>
</tr>
<tr>
<td>• Engaging with existing mechanisms to promote science-policy-practice coordination and building the co-production capacities of local researchers can make an initiative less reliant on external support and promotes sustainability (e.g. Zaman Lebidi).</td>
<td></td>
</tr>
</tbody>
</table>
3.1.2 Measuring the value of the co-production process

The co-production process is often undervalued by funders in performance metrics. To some extent, this results from a need to quantify outcomes of projects. However, the process of co-production is often as valuable, if not more valuable, than the development of a knowledge product, because the process of co-production can create a basis for future and ongoing collaboration. Moreover, tracking each building block in the co-production process enables projects to demonstrate impact even within (often) short project timeframes (Kniveton et al., 2016). For instance, changes in partnership relationships, engagement and trust between multi-disciplinary actors are often precursors to co-produced products. These changes can be assessed before the co-produced product is available or taken up.

Some of the less tangible results of co-production include the following:

• Building sustained personal and professional relationships that form the basis for ongoing and new collaboration.
• Enabling a greater understanding of decision-making processes between partners from different disciplines, backgrounds and professional functions (e.g. building an understanding of the climate modelling uncertainties among the users of climate services).
• Enabling the open flow of information between different actors and combining knowledge of actors
• Raising awareness and building capacity among multi-disciplinary groups that would otherwise not have been possible.
• Developing climate information products that are more in tune with specific contexts and realities, as they are directly informed by those who will be making use of the products.
• Fostering ownership of the final products leads to greater uptake and sustainability of the project outcomes.
• Contributing to the democratisation of risk governance.
• Behavioural change in how people are using weather and climate information to make informed decisions, or is leading to resources being directed to support the ongoing provision of that service.

IN PRACTICE: The FRACTAL project allowed city officials to engage in the academic thought process through casual, sustained conversations that included multiple perspectives. The project process allowed them to own the research process while building capacity around the use of climate information in policy decision-making. The value for the researchers lay in achieving a greater understanding of the city’s processes, identifying the gaps in information flow, and developing a context-specific and context-sensitive understanding of the role of climate information in the decision-making process.
While the value of the process is undeniably harder to quantify than the development of tangible products, this should not deter an effort to recognise the value of the process as part of performance metrics. Such metrics might include, for example:

- Assessing how the process has deepened various knowledge holders’ understanding of a subject area, including the capacity developed as a result of the project.
- Assessing the enhanced understanding of multiple disciplinary perspectives.
- Documenting the relationships built through the process and tracking any new projects or formalised partnerships that occur in the future as a result of the relationships built.
- Monitoring the effectiveness and uptake of the final co-produced products.

For example, in a project designed to develop an NMHS capacity development assessment tool for sustainable Climate Information Services, particular measures were proposed to explicitly measure user interaction. These included, for instance, metrics such as:

- Written material that documents user interaction.
- Number of formally signed Memorandums of Understanding between the NMHS and a user sector.
- A written procedure for incorporating user feedback into NMHS systems.

Many of the case studies in the annexes demonstrate the value of moving away from project terms of reference that require the development of co-produced climate service products through quantifiable step-by-step processes. Projects should rather move towards a focus on more sustained, reflexive and emergent process approaches that allow for flexibility, and include all knowledge holders as equal partners in the process.

3.1.3 Measuring the value of co-produced products

A co-produced product can take many forms (e.g. seasonal forecast, climate risk narrative, maproom). Products are often easier to measure the impact of than processes in terms of value for money and direct benefits people gained by using the weather and climate information to make an informed decision. Some of the ways to measure the value of co-produced products include the following:

- Number of products being produced.
- Number of people using the product.
- Number of people that have changed their decision based on the product.

The benefits for co-produced products are generally able to be measured within six months to a year of the product being developed.

IN PRACTICE: In the WISER Strengthening Climate Information Partnerships-East Africa (SCIPEA) project, a community-based climate services programme packaged and communicated tailored climate information to vulnerable people affected across Kenya by supplying them with long-term information. ‘The communities that embrace these kinds of initiatives see a substantial improvement in crop yields,’ said Jasper Batureine Mwesigwa, a PhD student at the University of Nairobi, who is involved in with the Food Security and Nutrition Working Group (FSNWG) and the Famine Early Warning Systems Network (WISER, 2019). This result highlights the fundamental difference that reliable information can make.

The main challenge with quantifying a product’s value is the sustainability. All too often, once a project ends, the resources needed to produce the product can also be compromised. In the following section, some ideas of how to overcome this challenge are provided.
3.2 Moving to scale and sustainability

Ensuring sustainability of co-production is largely a matter of proving to the actors involved that there is value in the process or product and then looking for ways to move from the project-funded system into a longer-term community or government-sustained process. This is not always easy but is vital if the long-term benefits of co-production are to be realised. Projects should: (i) ensure that the long-term sustainability is considered early on and; (ii) look to include partners who might take on the long-term role once the project ends, ensuring the development of a monitoring, evaluation and learning process that can evidence changes and demonstrate the value of climate service initiatives.

Successful co-production approaches can be tried out in new contexts or scaled up which is another way of ensuring that the value of the co-production is sustained. Scaling is dependent on the following conditions to be met, outlined by WRI (2015):

- **Resources**, including financial resources, institutional capacities – especially staff time – and communications technology.
- **Partnerships** between government agencies, NGOs and the private sector.
- **Local context** is taken into account, including local culture and work with local actors and groups.
- **Learning approach** may need to be modified based on a new location. Ensure there is opportunity to learn and refine the approach. It is also important to make sure that the integrity and quality of the approach is maintained.

IN PRACTICE: The Enhancing National Climate Services initiative was initially established as a dialogue between the National Meteorological Agency in Ethiopia (NMA) and the health community through the creation of a ‘Climate and Health Working Group’. This group, managed by a local NGO, undertook a series of joint training events so that each community better understood the needs and perspectives of the other. The project focuses simultaneously on the availability, access and use of climate information. Since NMA created its ENACTS climate products and launched its ENACTS Maprooms in 2011, more than ten other countries in Africa have implemented the ENACTS approach, with varying levels of sophistication. The East Africa’s Intergovernmental Authority on Development (IGAD) Climate Prediction and Applications Centre (ICPAC) is increasingly providing the needed technical support for national meteorological services in the region. However, investments in the technology and supply side of ENACTS is dwarfed by investment needs on the uptake side – both internally by the meteorological services (national to local), across sectors and with the people affected. The co-production of products and services is a critical part of the ENACTS philosophy, ensuring that there is co-learning during the process and that users’ articulated needs are used to change the way climate services are developed and delivered.

ENACTS Data and Services has been developed with technical support from the International Research Institute for Climate and Society and a wide range of donors, including WISER. A high degree of institutional buy-in results from ensuring that all the technical work and training of meteorological agency staff is conducted at their offices, respecting their policies and procedures. Recent evidence for this is two unsolicited standard operating procedure documents – one on data and one on maprooms – developed by Ethiopian staff for the management of their technical ENACTS procedures. Moving technical support from IRI to the regional climate centre ICPAC also promotes institutional ownership at the regional level. The incentive to continue the development of ENACTS data and services comes from local demand. Throughout the implementation process the meteorological services provide resources for the management of the services and the time for staff training.
The Participatory Scenario Planning approach was successfully developed and piloted in one county in Kenya. Three neighbouring counties were interested in replicating the approach, which was then adopted by all 47 Kenyan counties. The wide-scale adoption of the PSP approach in Kenya was made possible mainly due to Kenya’s devolution of government powers. This brought the Kenya Meteorological Department (KMD) and a Ministry of Agriculture Agricultural Sector Development Support Programme (ASDSP) to county level. This enabled the establishment of coordination and collaboration at county level and between counties, with buy-in and support from national level.

Subsequently, the PSP approach was adopted in Ethiopia, facilitated by an institutional agreement between CARE Ethiopia, the National Meteorology Agency, the Regional Disaster Risk Management Coordination Commissions in the Oromia, Afar and Somali regional states. The Ethiopia Red Cross and Red Cross Climate Centre have picked up the PSP approach and continue to support its institutionalisation.

The key factors that have enabled widespread scaling of the PSP model include:

• **Continuous needs-based capacity building** of meteorological services, government sectors, community institutions, local and international development organisations, private sectors, media and other actors on the approach and its contribution to disaster risk management, adaptation and climate-resilient decision-making.

• **Enhancing the visibility, role and capacity of county directorates of meteorology in Kenya**, enabling better focus on the provision of timely and relevant services to meet the needs of users.

• **Systematising learning and reflection** in the PSP workshops has resulted in a dynamic and evolving approach that should be tailored to context and use.

• **Recognising the importance of the intermediary facilitation role**.

• **Sharing the approach and its outcomes** at fora such as the Greater Horn of Africa Climate Outlook Forums (GHACOF). Climate services and adaptation conferences create good opportunities for discussing how PSP works and how it contributes to disaster risk management, adaptation and climate-resilient decision-making.

• **Creating new linkages** and gathering ideas on how to further evolve the approach.

An impact assessment was conducted under WISER and the Adaptation Learning Programme (ALP) to generate evidence to back up these findings. Challenges to sustainability are largely related to maintaining the integrity and quality of the process, ensuring sustainable resources are in place and responding to changing user demands within the constraints of the science product development. It can also be challenging to keep ensuring that: user needs continue to be heard; there is interaction between sectors; collective interpretation continues; and communication of certainty and quality is transparent.